

Question:

How to evaluate past and future changes in an ecosystem?

Ecosystem Restoration Goals and Objectives

- I mprove Aquatic And Terrestrial Habitat Along Matilija Creek And Ventura River
- Restore Fish Passage
- Restore Natural Processes To Support Beach Sand Replenishment
- Enhance Recreational Opportunities

GENERAL OVERVIEW OF CIVIL WORKS PHASES

- **RECONNALSSANCE STUDY**
- ➢ FEASI BILITY STUDY
- ▶ FINAL DESIGN
- **№ PROJECT CONSTRUCTI ON**

FEASIBILITY STUDY **FCSA - Feasibility Cost Sharing Agreement**

• Summer 2001

• Cost Shared 50/50 ≻County 50% • In-Kind

≫ Six Step Planning Process

• Cash

CONCERNS IDENTIFIED from Stakeholder Meetings

- ➢ ENDANGERED SPECIES
- STEELHEAD HABITAT IMPAIRED
- SEDIMENTATION
- WETLANDS
 NON NATIVE
- VEGETATION ➢ CULTURAL RESOURCES
- ➢ FLOODING
- » AIR QUALITY ≫ BANK EROSION
 - ➢ RECREATION
 - ≫ SOCIOECONOMIC

➢ LIABILITY

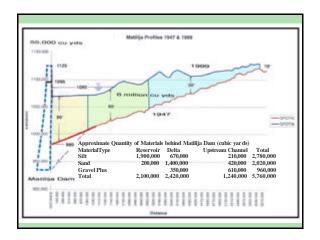
➢ TRAFFIC

➢ BEACH NOURI SHMENT

WATER QUALITY

FEASIBILITY STUDY Work Groups

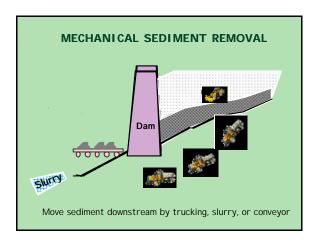
- Surveying and Mapping
- ֎ Hydrology and Hydraulics, Sediment Transport
- Geotechnical Investigations
- ✤ Environmental Resources Cultural Resources
- ֎ Coastal Studies
- ֎ Civil and Structural Design
- Plan Formulation/Alternative Analysis &
- **Technical Studies**
- Public Outreach

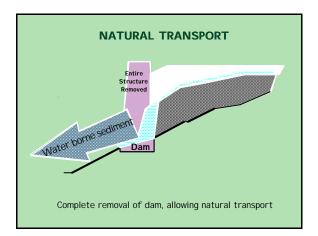

FEASIBILITY STUDY Surveying & Mapping

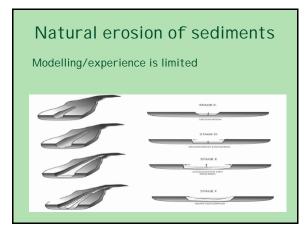
- Watershed Study
- ➢ Aerial Photography
- ✤ Contour Mapping
- ≫ GIS Map

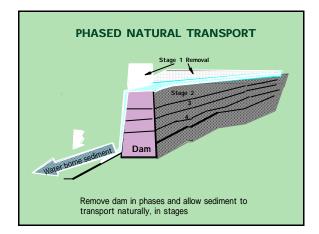
FEASIBILITY STUDY Hydrology/Hydraulics * Sediment Sampling * Hydrologic & Hydraulic Modeling Analysis * Sediment Transport

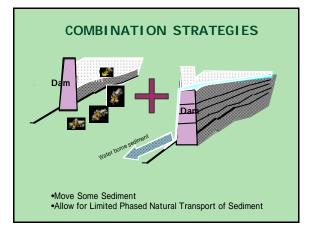
FEASIBILITY STUDY Geotechnical Investigations

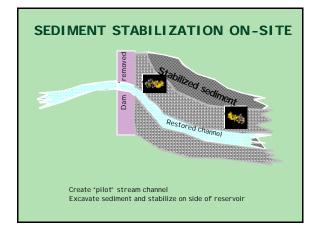



FEASI BILITY STUDY Plan Formulation: How to Remove the Dam: Sediment Management Options: * Mechanical removal * Natural Transport * Stabilize on site


FEASIBILITY STUDY Plan Formulation: Constraints to Dam Removal


& River Restoration:

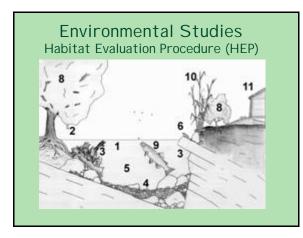

- Floodplain development
- water supply
- other impacts



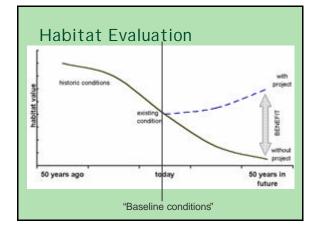


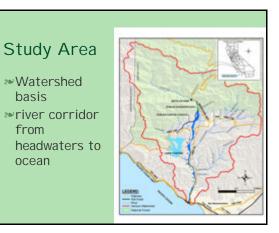
Environmental Studies & Habitat Evaluation

HEP is habitat based evaluation


"Modified" HEP Analysis

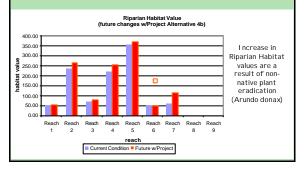
Used to:


- evaluate project benefits
- select optimal project
- justify costs


Habitat: Species diversity

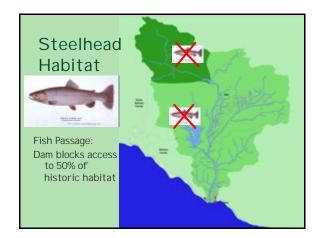
Study Reaches

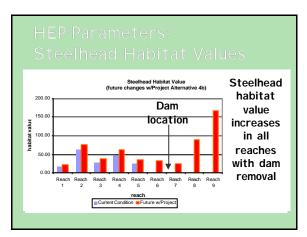
- River divided into segments
- hydrologic functions
- ecologic function
- Habitat Units
 HSI x acres
 of habitat

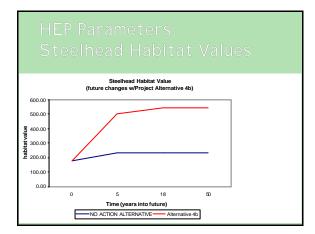


HEP Parameters: Riparian Habitat • Riparian Habitat Value =

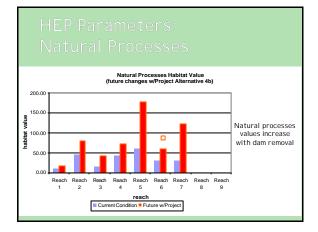
- ([2(%Native Veg. Cover + Giant Reed Cover)]
- +Listed Species
- + Adjacent Land Use Character) / 6

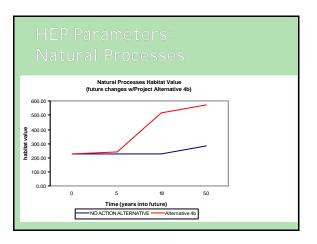

HEP Parameters: Riparian Habitat

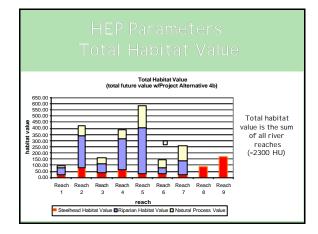

HEP Parameters: Steelhead Habitat

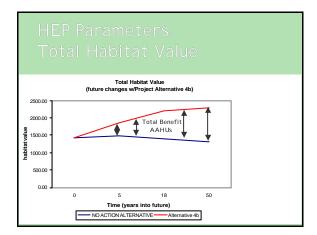

Steelhead Habitat Value = {(Habitat Value Score*) x [(Fish Passage) x (other steelhead factors)]1/2}1/2

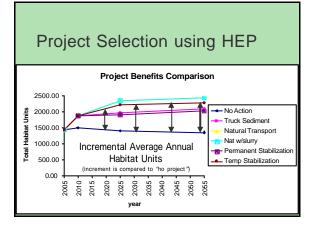
*Habitat Value Score Definitions 1 Very Poor, 2 Poor, 3 Fair, 4 Good; 5 Excellent; (as compared to historical condition)

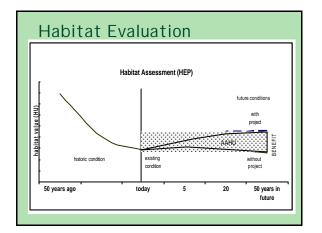




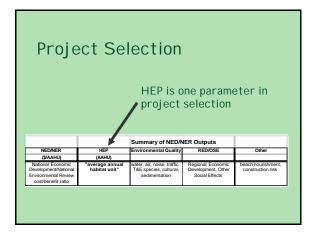








		F	Proj	ect	Ber	efits		
1								
T.						commended Pla	an (Habitat U	Jnits)
		ad Habitat		an Habitat		al Processes		
		ponent		iponent		mponent		TALS
TARGET YEAR	No Action	With Project	No Action	With Project	No Action	With Project	No Action	With Project
0	177	177	1032	1032	228	228	1437	1437
5	234	501	1029	1125	228	240	1491	1866
20	234	543	944	1145	228	520	1406	2208
50	234	544	782	1183	286	570	1302	2297
AAHUS	231	514	917	1147	245	464	1393	2128
		283		229		219		731
Change in AAHUs								



loct_h	enefit Ana	lveie	
503l-D		ary 515	
	Cost Effectiveness Ar		
	Incremental Avg. Annual		
Alternative	Habitat Units	Avg. Annual	cost/benefit
	(AAHU)	Cost (\$)	\$/AAHU
No Action	N/A	0	N/A
perm stabilization	554	6,498,000	11729
truck	609	6,917,000	11358
notch/slurry	678	8,006,000	11808
natural/slurry	678	7,963,000	11745
notch	678	6,900,000	10177
natural transport	678	6,637,000	9789
emp stabilization	731	6,498,000	8889

Additional Information

Overview of civil works process
 Other project alternatives
 mitigation measures

GENERAL OVERVIEW OF CIVIL WORKS PHASES

- **RECONNALSSANCE STUDY**
- ➢ FEASI BI LI TY STUDY
- ≫ FINAL DESIGN
- ≫ PROJECT CONSTRUCTION

IDENTIFIED CONCERNS

- * ENDANGERED SPECIES
- STEELHEAD HABITAT IMPAIRED
- ≫ SEDIMENTATION
- ≫ WETLANDS
- NON NATIVE VEGETATION
- CULTURAL RESOURCES
- FLOODING
- ➢ BEACH NOURI SHMENT
- ≫ LIABILITY
- WATER QUALITY
- ֎ TRAFFIC
- » AIR QUALITY» BANK EROSION
- ➢ RECREATION
- » SOCIOECONOMIC

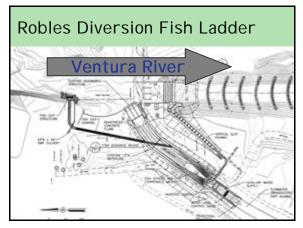
FEASIBILITY STUDY - Feasibility Cost Sharing Agre

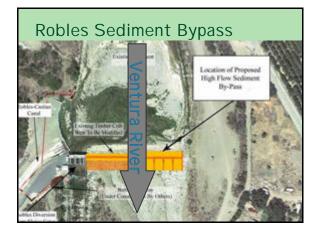
≈ Cost: \$4.2 Million
 Cost Shared 50/50
 ≻County 50%
 In-Kind
 Cash

Six Step Planning Process

FEASIBILITY STUDY GROUPS

- » Surveying and Mapping
- Hydrology and Hydraulics, Sediment Transport
- Geotechnical Investigations
- Environmental Resources
 Cultural Resources
- ✤ Coastal Studies
- ➢ Civil and Structural Design
- Plan Formulation/Alternative Analysis & Technical Studies
- ≫ Public Outreach


Mitigation Measures


≫ Flooding

- Levees & Bridges
- ■Water Supply
 - Robles High Flow bypass
 - Water supplies/sources
 - Foster park wells
 - Casitas Desiltation basin

